Direct product G=NxQ with N=C33 and Q=D4
Semidirect products G=N:Q with N=C33 and Q=D4
extension | φ:Q→Aut N | d | ρ | Label | ID |
C33:1D4 = C3xS3wrC2 | φ: D4/C1 → D4 ⊆ Aut C33 | 12 | 4 | C3^3:1D4 | 216,157 |
C33:2D4 = C33:D4 | φ: D4/C1 → D4 ⊆ Aut C33 | 12 | 4 | C3^3:2D4 | 216,158 |
C33:3D4 = C32:2D12 | φ: D4/C1 → D4 ⊆ Aut C33 | 12 | 8+ | C3^3:3D4 | 216,159 |
C33:4D4 = C3xD6:S3 | φ: D4/C2 → C22 ⊆ Aut C33 | 24 | 4 | C3^3:4D4 | 216,121 |
C33:5D4 = C3xC3:D12 | φ: D4/C2 → C22 ⊆ Aut C33 | 24 | 4 | C3^3:5D4 | 216,122 |
C33:6D4 = C33:6D4 | φ: D4/C2 → C22 ⊆ Aut C33 | 72 | | C3^3:6D4 | 216,127 |
C33:7D4 = C33:7D4 | φ: D4/C2 → C22 ⊆ Aut C33 | 36 | | C3^3:7D4 | 216,128 |
C33:8D4 = C33:8D4 | φ: D4/C2 → C22 ⊆ Aut C33 | 36 | | C3^3:8D4 | 216,129 |
C33:9D4 = C33:9D4 | φ: D4/C2 → C22 ⊆ Aut C33 | 24 | 4 | C3^3:9D4 | 216,132 |
C33:10D4 = C32xD12 | φ: D4/C4 → C2 ⊆ Aut C33 | 72 | | C3^3:10D4 | 216,137 |
C33:11D4 = C3xC12:S3 | φ: D4/C4 → C2 ⊆ Aut C33 | 72 | | C3^3:11D4 | 216,142 |
C33:12D4 = C33:12D4 | φ: D4/C4 → C2 ⊆ Aut C33 | 108 | | C3^3:12D4 | 216,147 |
C33:13D4 = C32xC3:D4 | φ: D4/C22 → C2 ⊆ Aut C33 | 36 | | C3^3:13D4 | 216,139 |
C33:14D4 = C3xC32:7D4 | φ: D4/C22 → C2 ⊆ Aut C33 | 36 | | C3^3:14D4 | 216,144 |
C33:15D4 = C33:15D4 | φ: D4/C22 → C2 ⊆ Aut C33 | 108 | | C3^3:15D4 | 216,149 |
x
:
Z
F
o
wr
Q
<